3.451 \(\int \frac{x}{(1+c^2 x^2)^{5/2} (a+b \sinh ^{-1}(c x))^2} \, dx\)

Optimal. Leaf size=27 \[ \text{Unintegrable}\left (\frac{x}{\left (c^2 x^2+1\right )^{5/2} \left (a+b \sinh ^{-1}(c x)\right )^2},x\right ) \]

[Out]

Unintegrable[x/((1 + c^2*x^2)^(5/2)*(a + b*ArcSinh[c*x])^2), x]

________________________________________________________________________________________

Rubi [A]  time = 0.0920734, antiderivative size = 0, normalized size of antiderivative = 0., number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0., Rules used = {} \[ \int \frac{x}{\left (1+c^2 x^2\right )^{5/2} \left (a+b \sinh ^{-1}(c x)\right )^2} \, dx \]

Verification is Not applicable to the result.

[In]

Int[x/((1 + c^2*x^2)^(5/2)*(a + b*ArcSinh[c*x])^2),x]

[Out]

Defer[Int][x/((1 + c^2*x^2)^(5/2)*(a + b*ArcSinh[c*x])^2), x]

Rubi steps

\begin{align*} \int \frac{x}{\left (1+c^2 x^2\right )^{5/2} \left (a+b \sinh ^{-1}(c x)\right )^2} \, dx &=\int \frac{x}{\left (1+c^2 x^2\right )^{5/2} \left (a+b \sinh ^{-1}(c x)\right )^2} \, dx\\ \end{align*}

Mathematica [A]  time = 10.6859, size = 0, normalized size = 0. \[ \int \frac{x}{\left (1+c^2 x^2\right )^{5/2} \left (a+b \sinh ^{-1}(c x)\right )^2} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[x/((1 + c^2*x^2)^(5/2)*(a + b*ArcSinh[c*x])^2),x]

[Out]

Integrate[x/((1 + c^2*x^2)^(5/2)*(a + b*ArcSinh[c*x])^2), x]

________________________________________________________________________________________

Maple [A]  time = 0.26, size = 0, normalized size = 0. \begin{align*} \int{\frac{x}{ \left ( a+b{\it Arcsinh} \left ( cx \right ) \right ) ^{2}} \left ({c}^{2}{x}^{2}+1 \right ) ^{-{\frac{5}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(c^2*x^2+1)^(5/2)/(a+b*arcsinh(c*x))^2,x)

[Out]

int(x/(c^2*x^2+1)^(5/2)/(a+b*arcsinh(c*x))^2,x)

________________________________________________________________________________________

Maxima [A]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{c x^{2} + \sqrt{c^{2} x^{2} + 1} x}{{\left (a b c^{4} x^{3} + a b c^{2} x\right )}{\left (c^{2} x^{2} + 1\right )} +{\left ({\left (b^{2} c^{4} x^{3} + b^{2} c^{2} x\right )}{\left (c^{2} x^{2} + 1\right )} +{\left (b^{2} c^{5} x^{4} + 2 \, b^{2} c^{3} x^{2} + b^{2} c\right )} \sqrt{c^{2} x^{2} + 1}\right )} \log \left (c x + \sqrt{c^{2} x^{2} + 1}\right ) +{\left (a b c^{5} x^{4} + 2 \, a b c^{3} x^{2} + a b c\right )} \sqrt{c^{2} x^{2} + 1}} - \int \frac{3 \, c^{5} x^{5} + 3 \,{\left (c^{2} x^{2} + 1\right )} c^{3} x^{3} + c^{3} x^{3} - 2 \, c x +{\left (6 \, c^{4} x^{4} + c^{2} x^{2} - 1\right )} \sqrt{c^{2} x^{2} + 1}}{{\left (a b c^{7} x^{6} + 2 \, a b c^{5} x^{4} + a b c^{3} x^{2}\right )}{\left (c^{2} x^{2} + 1\right )}^{\frac{3}{2}} + 2 \,{\left (a b c^{8} x^{7} + 3 \, a b c^{6} x^{5} + 3 \, a b c^{4} x^{3} + a b c^{2} x\right )}{\left (c^{2} x^{2} + 1\right )} +{\left ({\left (b^{2} c^{7} x^{6} + 2 \, b^{2} c^{5} x^{4} + b^{2} c^{3} x^{2}\right )}{\left (c^{2} x^{2} + 1\right )}^{\frac{3}{2}} + 2 \,{\left (b^{2} c^{8} x^{7} + 3 \, b^{2} c^{6} x^{5} + 3 \, b^{2} c^{4} x^{3} + b^{2} c^{2} x\right )}{\left (c^{2} x^{2} + 1\right )} +{\left (b^{2} c^{9} x^{8} + 4 \, b^{2} c^{7} x^{6} + 6 \, b^{2} c^{5} x^{4} + 4 \, b^{2} c^{3} x^{2} + b^{2} c\right )} \sqrt{c^{2} x^{2} + 1}\right )} \log \left (c x + \sqrt{c^{2} x^{2} + 1}\right ) +{\left (a b c^{9} x^{8} + 4 \, a b c^{7} x^{6} + 6 \, a b c^{5} x^{4} + 4 \, a b c^{3} x^{2} + a b c\right )} \sqrt{c^{2} x^{2} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c^2*x^2+1)^(5/2)/(a+b*arcsinh(c*x))^2,x, algorithm="maxima")

[Out]

-(c*x^2 + sqrt(c^2*x^2 + 1)*x)/((a*b*c^4*x^3 + a*b*c^2*x)*(c^2*x^2 + 1) + ((b^2*c^4*x^3 + b^2*c^2*x)*(c^2*x^2
+ 1) + (b^2*c^5*x^4 + 2*b^2*c^3*x^2 + b^2*c)*sqrt(c^2*x^2 + 1))*log(c*x + sqrt(c^2*x^2 + 1)) + (a*b*c^5*x^4 +
2*a*b*c^3*x^2 + a*b*c)*sqrt(c^2*x^2 + 1)) - integrate((3*c^5*x^5 + 3*(c^2*x^2 + 1)*c^3*x^3 + c^3*x^3 - 2*c*x +
 (6*c^4*x^4 + c^2*x^2 - 1)*sqrt(c^2*x^2 + 1))/((a*b*c^7*x^6 + 2*a*b*c^5*x^4 + a*b*c^3*x^2)*(c^2*x^2 + 1)^(3/2)
 + 2*(a*b*c^8*x^7 + 3*a*b*c^6*x^5 + 3*a*b*c^4*x^3 + a*b*c^2*x)*(c^2*x^2 + 1) + ((b^2*c^7*x^6 + 2*b^2*c^5*x^4 +
 b^2*c^3*x^2)*(c^2*x^2 + 1)^(3/2) + 2*(b^2*c^8*x^7 + 3*b^2*c^6*x^5 + 3*b^2*c^4*x^3 + b^2*c^2*x)*(c^2*x^2 + 1)
+ (b^2*c^9*x^8 + 4*b^2*c^7*x^6 + 6*b^2*c^5*x^4 + 4*b^2*c^3*x^2 + b^2*c)*sqrt(c^2*x^2 + 1))*log(c*x + sqrt(c^2*
x^2 + 1)) + (a*b*c^9*x^8 + 4*a*b*c^7*x^6 + 6*a*b*c^5*x^4 + 4*a*b*c^3*x^2 + a*b*c)*sqrt(c^2*x^2 + 1)), x)

________________________________________________________________________________________

Fricas [A]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c^{2} x^{2} + 1} x}{a^{2} c^{6} x^{6} + 3 \, a^{2} c^{4} x^{4} + 3 \, a^{2} c^{2} x^{2} +{\left (b^{2} c^{6} x^{6} + 3 \, b^{2} c^{4} x^{4} + 3 \, b^{2} c^{2} x^{2} + b^{2}\right )} \operatorname{arsinh}\left (c x\right )^{2} + a^{2} + 2 \,{\left (a b c^{6} x^{6} + 3 \, a b c^{4} x^{4} + 3 \, a b c^{2} x^{2} + a b\right )} \operatorname{arsinh}\left (c x\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c^2*x^2+1)^(5/2)/(a+b*arcsinh(c*x))^2,x, algorithm="fricas")

[Out]

integral(sqrt(c^2*x^2 + 1)*x/(a^2*c^6*x^6 + 3*a^2*c^4*x^4 + 3*a^2*c^2*x^2 + (b^2*c^6*x^6 + 3*b^2*c^4*x^4 + 3*b
^2*c^2*x^2 + b^2)*arcsinh(c*x)^2 + a^2 + 2*(a*b*c^6*x^6 + 3*a*b*c^4*x^4 + 3*a*b*c^2*x^2 + a*b)*arcsinh(c*x)),
x)

________________________________________________________________________________________

Sympy [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\left (a + b \operatorname{asinh}{\left (c x \right )}\right )^{2} \left (c^{2} x^{2} + 1\right )^{\frac{5}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c**2*x**2+1)**(5/2)/(a+b*asinh(c*x))**2,x)

[Out]

Integral(x/((a + b*asinh(c*x))**2*(c**2*x**2 + 1)**(5/2)), x)

________________________________________________________________________________________

Giac [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{{\left (c^{2} x^{2} + 1\right )}^{\frac{5}{2}}{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c^2*x^2+1)^(5/2)/(a+b*arcsinh(c*x))^2,x, algorithm="giac")

[Out]

integrate(x/((c^2*x^2 + 1)^(5/2)*(b*arcsinh(c*x) + a)^2), x)